Hankel Determinant Solutions to Several Discrete Integrable Systems and the Laurent Property

نویسندگان

  • Xiang-Ke Chang
  • Xing-Biao Hu
  • Guoce Xin
چکیده

Abstract. Many discrete integrable systems exhibit the Laurent phenomenon. In this paper, we investigate three integrable systems: the Somos-4 recurrence, the Somos-5 recurrence and a system related to so-called A1 Q-system, whose general solutions are derived in terms of Hankel determinant. As a result, we directly confirm that they satisfy the Laurent property. Additionally, it is shown that the Somos-5 recurrence can be viewed as a specified Bäcklund transformation of the Somos-4 recurrence. The related topics about Somos polynomials are also studied.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Singularity confinement for maps with the Laurent property

The singularity confinement test is very useful for isolating integrable cases of discrete-time dynamical systems, but it does not provide a sufficient criterion for integrability. Quite recently a new property of the bilinear equations appearing in discrete soliton theory has been noticed: the iterates of such equations are Laurent polynomials in the initial data. A large class of non-integrab...

متن کامل

ON ANNIHILATOR PROPERTIES OF INVERSE SKEW POWER SERIES RINGS

Let $alpha$ be an automorphism of a ring $R$. The authors [On skewinverse Laurent-serieswise Armendariz rings, Comm. Algebra 40(1)(2012) 138-156] applied the concept of Armendariz rings to inverseskew Laurent series rings and introduced skew inverseLaurent-serieswise Armendariz rings. In this article, we study on aspecial type of these rings and introduce strongly Armendariz ringsof inverse ske...

متن کامل

and Casorati Determinant Solutions to Non - autonomous 1 + 1 Dimensional Discrete Soliton Equations ( Expansion of Integrable Systems

Some techniques of bilinearization of the non-autonomous 1+1 dimensional discrete soliton equations are discussed by taking the discrete KdV equation, the discrete Toda lattice equation, and the discrete Lotka-Volterra equation as examples. Casorati determinant solutions to those equations are also constructed explicitly. §

متن کامل

Solutions structure of integrable families of Riccati equations and their applications to the perturbed nonlinear fractional Schrodinger equation

Some preliminaries about the integrable families of Riccati equations and solutions structure of these equations in several cases are presented in this paper, then by using of definitions for fractional derivative we apply the new extended of tanh method to the perturbed nonlinear fractional Schrodinger equation with the kerr law nonlinearity. Finally by using of this method and solutions of Ri...

متن کامل

An integrable semi-discretization of the Camassa-Holm equation and its determinant solution

Abstract. An integrable semi-discretization of the Camassa-Holm equation is presented. The keys of its construction are bilinear forms and determinant structure of solutions of the CH equation. Determinant formulas of N-soliton solutions of the continuous and semi-discrete Camassa-Holm equations are presented. Based on determinant formulas, we can generate multi-soliton, multi-cuspon and multi-...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • SIAM J. Discrete Math.

دوره 29  شماره 

صفحات  -

تاریخ انتشار 2015